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ARTICLE INFO ABSTRACT

Keywords: Designing catalyst with the combined merits of heterogeneous catalysts and homogeneous catalysts through
Reduced graphene oxide much simple one-step preparation process is always a challenge in catalysis. In this report, organic ligand tri-
Bifunctional reducing agent phenylphosphine (PPhs) is first introduced as a reducing agent to reduce graphene oxide (GO) and accomplish a
Triphenylphosphine

reduced graphene oxide (rGO) supported metal-ligand complex catalyst simultaneously. Here, the employed
PPh; not only acts as an effective reducing agent to reduce GO, but also as a functional group to in-situ form
ligand functionalized rhodium catalyst immobilized on rGO (PPh3-Rh/rGO). The prepared PPh3-Rh/rGO cata-
lyst, as a heterogeneous catalyst, is applied in 1-olefins hydroformylation to form normal aldehyde, exhibiting
remarkable catalytic activity and selectivity compared with other heterogeneous catalysts. It affords aldehydes
in higher yields with better regioselectivity on linear products than those of other two reference catalysts re-
duced by ethylene glycol and hydrazine hydrate. More importantly, this efficient and simple method for pre-
paring ligand modified metal complex catalyst supported on rGO is scalable. The great varieties of organic
ligands can be chosen to extend the synthetic strategy for preparing rGO supported metal-ligand complex cat-
alysts for various reactions.

Heterogeneous catalyst
Hydroformylation

1. Introduction products remains a great challenge and limits their industrial applica-
tion [1-4]. Therefore, the heterogenization or immobilization of

Homogeneous catalysts can realize high activity and selectivity for homogeneous catalysts onto the solid supports have aroused consider-
synthesizing fine chemical products, but their separation from the able concerns in recent years [5-9]. Rhodium based homogeneous
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catalysts are the most efficient catalysts under mild conditions for hy-
droformylation of olefins, one of the largest homogeneously catalyzed
reactions to produce aldehydes in industry [10]. In order to overcome
the drawbacks of homogeneous catalyst, many efforts have been done
to develop Rh based heterogeneous catalysts for hydroformylation re-
action. Homogeneous species chemically grafted on the solid silica has
been investigated for heterogeneous hydroformylation [11]. Hetero-
genizations of homogeneous catalysts in aqueous phase, ionic liquids or
fluorous phase have also been employed for hydroformylation in bi-
phasic systems [12-14]. These catalysts can be readily separated and
recycled from the reaction mixtures, but the synthesis procedures and
operating conditions are usually complicated. Thus, it is highly neces-
sary to exploit solid supported rhodium catalysts with high activity by
simple preparation methods. Recently, Zhao and Yang et al. adopted
surface modified mesoporous silica nanospheres as stabilizer to support
Rh-TPPTS, forming an efficient and stable oil/water Pickering emulsion
system, which exhibited excellent performance for hydroformylation of
1-octene [15]. Xiao and Ding et al. prepared porous organic polymers
by copolymerized vinyl functionalized ligands to support Rh species,
which demonstrated excellent activity and selectivity [16,17]. In our
previous study, graphene supported Rh nanoparticles prepared by one-
pot reduction method, exhibited outstanding activity and selectivity in
comparison to activated carbon or CNTs based Rh catalysts, making
graphene an intriguing support for metal catalysts [18].

Graphene, a new class of carbon materials, has attracted consider-
able attentions and acquired fast-paced development because of its
unique properties [19,20]. Due to its high thermal, chemical and me-
chanical stabilities, as well as high surface area, graphene is regarded
as an ideal catalyst support for heterogeneous catalyst [21-24]. Bene-
fitting from the rich surface properties, graphene also has the potential
to promote the catalytic activity and stability of the supported species
through cation-nt interactions or s-it stacking [25,26]. Moreover, the
desirable 2D support layers of graphene are beneficial to the diffusion
of reactants and products. Chemical reduction of graphene oxide (GO)
is an effective and convenient approach to prepare reduced graphene
oxide (rGO) [27-30]. Furthermore, the rGO prepared by chemical re-
duction method owns some surface defects, which are beneficial to
improve the catalyst activity if it is employed as the heterogeneous
catalyst support. Until now, a wide range of reducing agents, such as
borohydrides (NaBH,), nitrogen-containing reducing agents (hy-
drazine, urea, ammonia), oxygen-containing reducing agents (alcohol,
L-ascorbic acid) and so on [27,28,30-34], have been utilized to reduce
GO to rGO. However, these reducing agents only have reduction role,
and excessive reducing agents employed for GO reduction usually result
in the contamination of the resultant product [21,27,35]. Therefore, a
reducing agent with the function for GO reduction coupled with being
acted as promoter to boost the catalyst performance is an ideal meth-
odology in the research of reduction and functionalization of graphene
for specific applications.

Organic ligands are extremely important in homogeneous catalysis.
Triphenylphosphine (PPh3) as a common and relatively inexpensive
organophosphorus ligand has been widely utilized in the fabrication of
ligands-metal complexes for homogeneous catalysis [36,37]. Never-
theless, the difficulty of separation and recovery severely limits their
applications. In order to overcome the difficulties of catalyst separation
and recovery in homogeneous catalysis, many efforts have been un-
dertaken by developing the corresponding heterogeneous catalysts.
Heterogenization or immobilization of these homogeneous complexes
onto solid supports is regarded as an effective method. Because of large
specific surface area and high adsorption capacity, graphene and its
derivatives (such as GO) can be valuable supports to interact with
various species. In homogeneous catalysis system, the usage of PPhs
mainly depends on its nucleophilicity and reducibility, as well as ex-
cellent metal coordination-chelation ability with transition metals
[36,38]. These virtues of PPh; also provide us a new perspective on the
reduction of rGO by PPhs, along with in-situ formation of ligand
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functionalized transition metal catalyst supported on rGO.

Herein, the organic ligand of PPh3 was first employed to reduce GO
and in situ prepare rGO supported metal-ligand catalyst. With our de-
sign, PPh; acts as not only a reducing agent, but also a functional group
to modify Rh on rGO. GO sheets mixed with metal precursor (RhCl3)
were simultaneously reduced to obtain PPh; functionalized Rh/rGO
heterogeneous catalyst (PPhs-Rh/rGO) facilely. The PPh3-Rh/rGO cat-
alyst, anchoring homogeneous ligand-metal on the heterogeneous rGO,
exhibited excellent catalytic activity and product selectivity in hydro-
formylation of 1-olefins, as well as easy separation and recycle.

2. Experimental
2.1. Preparation of catalysts

The PPh3-Rh/rGO catalyst was prepared via a one-pot liquid phase
reduction method (Fig. S1). 0.3 g of graphite oxide prepared from
natural graphite by modified Hummer’s method (Supplementary
Material) was firstly dispersed in 150 mL ethanol, and then homo-
geneous colloidal suspension of GO was achieved after ultrasonic
treatment for 2 h. 0.008 g RhCl3:3H,0O was added into the above sus-
pension and stirred for 10 min. After added 0.5 g PPhs, the mixed
suspension was shaken vigorously in glove box under nitrogen atmo-
sphere. Subsequently, the mixture was heated in oil bath at 90 °C for 6 h
with stirring and water reflux under nitrogen protection. Finally, the
mixture was filtered immediately and repeatedly rinsed by hot ethanol
to remove the generated triphenylphosphine oxide (O=PPhs3) and
dissociative PPhs. The obtained sample was dried in vacuum at 60 °C
for 24 h to get PPh3-Rh/rGO catalyst.

Ethylene glycol (EG) and hydrazine hydrate (N,H4H>0) were also
utilized to prepare Rh/rGO catalysts as reference catalysts: EG-Rh/rGO
and NoH4-Rh/rGO. The preparation methods were described in
Supplementary Material.

2.2. Characterization of catalysts

Detailed descriptions of catalysts characterizations were given in
Supplementary Material.

2.3. Catalytic activity test

The reaction of 1-olefin hydroformylation was carried out in a
stainless steel autoclave. The reaction details were shown in
Supplementary Material. The liquid products were analyzed quantita-
tively with a gas chromatograph (Shimadzu GC 2014) equipped with a
capillary column (InertCap 5, length: 30 m) and a flame ionization
detector (FID).

3. Results and discussion
3.1. The reduction of GO by PPh3

The reduction effect of PPh; on GO was characterized by X-ray
diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS).
In order to prove that GO was indeed reduced by PPhs, instead of other
factors (such as temperature or solution), Rh/GO was also prepared by
the same preparation method without using PPh;. Fig. 1A compares the
XRD patterns of graphite oxide, Rh/GO and PPh3-Rh/rGO. For graphite
oxide, the obvious peak located at 10.7° is the characteristic of graphite
oxide [39]. Due to the reduction of GO to rGO by PPhs, the peak at
10.7° disappears and two peaks at 24° and 43° belonging to the crys-
talline structure of rGO appear on PPh3-Rh/rGO [18]. In contrary, the
peak at 10.7° is still observed on Rh/GO, indicating that the GO sheets
aggregate and reassemble to graphite oxide without reduction by PPhs.
The SEM image of Rh/GO (Fig. 1B, top) shows the agglomeration of
exfoliated sheets, while that of PPh3-Rh/rGO (Fig. 1B, bottom) mainly
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Fig. 1. (A) XRD patterns of graphite oxide, Rh/GO and
PPh3-Rh/rGO; (B) SEM images of Rh/GO and PPh3-Rh/rGO;
(C) C1s XPS spectra of graphite oxide, Rh/GO and PPh;-Rh/
rGO; (D) Raman spectra of graphite oxide, Rh/GO and PPhs-
Rh/rGO.
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presents seldom aggregated and more ultrathin graphene sheets. Fur-
thermore, the specific surface area of PPh;-Rh/rGO obtained from N,
adsorption-desorption isotherm (Fig. S2) reaches 424.3 m?/g, much
larger than 31.7 m?/g of Rh/GO. The reduction of GO to rGO by PPh;
was also confirmed by XPS. As shown in Fig. 1C, the fitted C1s suggests
that the intensities of C—O (at 286.8 eV), C=0 (at 287.2eV) and
O—C=0 (at 288.4 eV) on PPh3-Rh/rGO catalyst decrease significantly
compared to those of GO and Rh/GO, revealing the successful reduction
of GO by PPh3 [30]. Raman spectroscopy is an effective characteriza-
tion method for carbon material [40]. The Ip/Ig value of PPh;-Rh/rGO
is obviously larger than those of graphite oxide and Rh/GO as shown in
Fig. 1D, indicating more defects emerged on PPh3-Rh/rGO due to the
reduction by PPh; [41].

These findings indicate that PPh; is an effective reducing agent to
reduce GO to rGO. The reducing action of PPhj is driven from the
formation of O=PPh3 which removes the oxygen from GO to form rGO
[38], as illustrated the schematic in Fig. 2A. Furthermore, the role of
temperature in reduction of GO by PPhj is also investigated. When the
reduction temperature is 80 °C, GO cannot be well reduced by PPh; as
proved by XPS (Fig. 2B). PPh; can act as a better reducing agent at a
higher temperature (> 80 °C), because the formation of O=PPh; is
thermodynamically favored at higher temperature [38].

3.2. The functional action of PPhs on Rh/rGO

PPh; plays as not only an effective reducing agent to reduce GO, but
also a functional group to in-situ form ligand functionalized Rh catalyst
immobilized by rGO. The functional action of PPh; on Rh/rGO can be
identified by XPS. As shown in Fig. 3A, in addition to the peaks of Cls,
O1ls and Rh3d, two peaks of Cl2p and P2p exist on PPh3-Rh/rGO, in
comparison to Rh/GO. According to the XPS result of PPh;-Rh/rGO, the

Raman shift ccm™)

mole ratio of P to Rh is about 4.5. The binding energies of these peaks
(Rh3d3,, at 309.4 eV, Cl2p at 189.5 eV, and P2p at 131.8 eV) given in
Fig. 3B-D are similar to those of RhCl(PPhs),, which proves the for-
mation of PPhs-Rh complex on rGO [42-44]. Further evidence for the
formation of PPhz-Rh complex on rGO can be obtained by solid-state
1P NMR spectrum of PPh3-Rh/rGO catalyst to verify the coordination
between PPh; and Rh in Fig. 4. The 3P NMR spectrum displays two
main peaks at —5.15 and 31.16 ppm. The sharp peak at —5.15 ppm is
assigned to the free PPh; adsorbed on rGO [45]. The peak at 31.16 ppm
overlapped with a weak peak at 26.01 ppm is attributed to the PPhs
coordinated with Rh indicating the in situ formation of PPhs-Rh com-
plex on rGO [46].

The distribution of Rh and P on the surface of rGO can be de-
termined by STEM-EDS mapping and HRTEM (Fig. 5). From the STEM-
EDS element mapping in Fig. 5A-D, we can see that both P and Rh are
highly dispersed on rGO. However, no Rh nanoparticles are detected
from HRTEM images (Fig. 5E and F), excluding the formation of Rh
nanoparticles. The result indicates PPh; functionalized Rh catalyst, as a
homogeneous catalysts, is immobilized on rGO.

Thermogravimetric measurement of PPh3-Rh/rGO in nitrogen (Fig.
S3) discloses that the weight begins to loss above 250 °C, which can be
attributed to the decomposition of PPh3-Rh complex on rGO, demon-
strating that PPh3-Rh/rGO catalyst has good thermal stability. The TGA
of PPh3-Rh/rGO in air (Fig. S4) was also conducted to obtain the Rh
loading 2.72%).

3.3. Catalytic performance of various catalysts
Hydroformylation reaction, i.e. adding H, and CO to the C=C bond

of 1-olefins with 100% atomic economy to yield aldehydes or alcohols,
is an important catalysis process [10]. Hydroformylation of long-chain
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Fig. 2. (A) Schematic of graphene oxide reduced by PPhs; (B) C1s XPS

A) spectra of graphene oxide reduced by PPhj at 80 °C.
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olefins to produce aliphatic aldehydes is of great value because of their 3116
high industrial application in the production of detergents, plasticizers, i
solvents and surfactants [47-49]. The catalytic performance of as-de-
signed PPh3-Rh/rGO catalyst for olefins hydroformylation was eval-
uated by employing 1-hexene and 1-octene as model substrates in this
report.

In order to clarify the roles of PPh3 as reducing agent and functional
ligand for PPh3-Rh/rGO, other two reducing agents, ethylene glycol
(EG) and hydrazine hydrate (N,H4H,0) were utilized to prepare Rh/
rGO catalysts: EG-Rh/rGO and N,H4-Rh/rGO (Figs. S5-S11). Different
form PPh3-Rh/rGO catalyst, Rh nanoparticles were formed on rGO with
the reduction action of EG and NyH, as shown in TEM images (Figs. S5). i i i
The rGO supported Rh nanoparticles catalyst exhibited high catalytic 100 50 0 -50 -100
activity for hydroformylation in previous work [18]. Tables 1 and S1 ppm
present the catalytic performance of various catalysts on the hydro- . "
formylation of 1-hexene or 1-octene. EG and N,H4H,0, as two con- Fig. 4. P NPR spectrum of PPhs-Rh/rGO catalyst.
ventional reducing agents for graphene oxide reduction, were often
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Fig. 5. STEM-EDS element mappings and TEM images of PPh3-Rh/rGO catalyst: (A) STEM image; (B) C element mapping; (C) P element mapping; and (D) Rh element mapping; (E) TEM

image at low magnification; (F) TEM image at high magnification.

Table 1
Catalytic performance of varied catalysts for hydroformylation of 1-hexene and 1-octene.”
CHO
CO/H CHO
R /\ 42> R /\/ R
Catalyst
No. Catalyst Reactant Conv. (%)" Yield (%)° n/i¢
1 PPh3-Rh/rGO 1-Hexene 99.9 99.2 2.10
2¢ PPh3-Rh/rGO 1-Hexene 99.4 98.9 2.06
3 EG-Rh/rGO 1-Hexene 99.5 82.7 0.90
4 N,H4-Rh/rGO 1-Hexene 99.4 77.7 1.00
5 PPh3-Rh/rGO 1-Octene 99.9 99.0 1.46
6 EG-Rh/rGO 1-Octene 99.9 92.3 0.67
7 N,H,4-Rh/rGO 1-Octene 99.7 77.6 0.81

@ Reaction conditions: 0.10 g catalyst, 3.73 g 1-hexene or 4.97 g 1-octene, 5MPa
syngas (CO/H, = 1), 90 °C, 4 h.

b The conversion of 1-hexene or 1-octene.

¢ The yield of aldehyde.

9 n/i ratio of aldehyde.

¢ Reuse.

used to prepare rGO supported metal catalyst for various reactions. In
our work, both reference catalysts of EG-Rh/rGO and N,H4-Rh/rGO
catalysts show high catalytic activity for olefins conversion, but with
lower aldehyde selectivity. PPh3-Rh/rGO catalyst exhibits both higher
catalytic activity and better yield of aldehyde than EG-Rh/rGO and
NoH4-Rh/rGO catalysts. More importantly, PPh3-Rh/rGO not only gives
higher yield of aldehydes, but also exhibits excellent regioselectivity of
linear aldehydes. No matter 1-hexene or 1l-octene is selected as the
substrate, the n/i ratios (molar ratio of linear to branched aldehydes)

obtained by PPh3-Rh/rGO catalyst are rather higher than those ob-
tained by reference catalysts. For EG-Rh/rGO and N,H4-Rh/rGO cata-
lysts, adding PPhs could also improve their catalytic performance as
shown in Table S2. The yield and n/i ratio of aldehyde can be both
increased by adding PPhs. It indicated that PPh; plays an important
effect for promoting hydroformylation. Nonetheless, even adding PPhs,
the catalytic performances of EG-Rh/rGO and N,H,4-Rh/rGO catalysts
are still lower than that of PPh3-Rh/rGO. The excellent catalytic per-
formance of PPh;-Rh/rGO should be attributed to the anchored PPhs
ligands coordinated to Rh highly dispersed on rGO, as shown in Fig. 6.
Different from these reducing agents (EG and N,H4H,0) with only
single reducing function, excessive PPh; can also act asa functional
ligand coordinated to Rh, besides its function as reducing agent. The
steric and electronic attributes of these ligands coordinated to the Rh
are in favour of improving the regioselectivity of linear aldehydes in
olefins hydroformylation reaction, which therefore leads to the higher
n/i ratio of aldehydes for PPh3-Rh/rGO catalyst [17,50,51]. Moreover,
different from the traditional homogeneous metal-ligand catalysts for
hydroformylation, the PPh3-Rh/rGO catalyst can be separated and re-
cycled easily. The reused PPh3-Rh/rGO catalyst can keep high catalytic
activity and selectivity as the fresh one, as given in Table 1. Otherwise,
the liquid separated from the catalyst after first cycle and added into
5 mL 1-hexene to react under the same reaction conditions but no ac-
tivity was detected. The recycling of PPh3-Rh/rGO catalyst for hydro-
formylation of 1-hexene was tested though five cycles under the same
reaction conditions. The high 1-hexene conversion and products se-
lectivity of the repeated catalyst are maintained after 5 cycles, as shown
in Fig. S12.
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4. Conclusions

In summary, an organic ligand of PPh; was first used as reducing
agent to reduce GO and as functional group to fabricate PPh; functio-
nalized Rh/rGO heterogeneous catalyst simultaneously. The as-made
PPh3-Rh/rGO catalyst is an efficient heterogeneous catalyst for 1-ole-
fins hydroformylation exhibiting excellent catalytic performance, not
only enhancing aldehyde yield, but also improving linear aldehyde
selectivity and the n/i ratio in the final products. This contribution, for
the first time, demonstrates an organic ligand of PPh; as multi-
functional reducing agent for both reducing GO to form rGO and syn-
thesizing PPh; modified metal complex catalyst supported on rGO. The
presented catalyst preparation method makes the immobilization of
homogeneous ligand catalysts on the solid support easily. The great
varieties of organic ligands can be chosen appropriately to extend the
synthetic strategy for preparing rGO supported catalysts for various
reactions. The research results also provide a new viewpoint for ex-
tending the selection of reducing agent to synthesize graphene-based
materials for special applications.
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