Iron-Catalyzed Remote C-H Alkylation of 8-Amidoquinolines with Cycloalkanes

Wengang Xu ${ }^{\text {a }}$ (
Mingbo Wu*a
Naohiko Yoshikai ${ }^{* b}$ (1
College of New Energy, Institute of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. of China
wumb@upc.edu.cn
${ }^{\text {b }}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore nyoshikai@ntu.edu.sg
Published as part of the Special Topic
Bond Activation - in Honor of Prof. Shinji Murai

Received: 20.11.2020
Accepted after revision: 15.12.2020
Published online: 15.12.2020
DOI: 10.1055/a-1337-5416; Art ID: ss-2020-f0595-st
Abstract An iron-catalyzed, peroxide-mediated cross-dehydrogenative coupling between 8 -amidoquinolines and cycloalkanes has been developed for the site-selective alkylation of the quinoline nucleus at the C5 position. The reaction tolerates various substituted N-(quinolin8 -yl)benzamides and N-(quinolin- 8 -yl)alkylamides, affording the corresponding C5-alkylation products in good yields. On the basis of control experiments, a reaction mechanism involving the addition of an alkyl radical to an iron-chelated intermediate is proposed.

Key words C-H functionalization, iron catalysis, quinolines, alkylation, radical reaction

The quinoline nucleus is widely present in pharmaceuticals and natural products. ${ }^{1}$ Consequently, direct and siteselective C-H functionalization of this privileged heterocycle has attracted considerable attention as a strategy to rapidly access structurally diverse quinoline derivatives. ${ }^{2}$ Among various $\mathrm{C}-\mathrm{H}$ functionalization reactions of quinolines, those employing 8 -amidoquinoline, which was originally popularized as an excellent N, N-bidentate directing group for chelation-assisted C-H functionalizations, ${ }^{3}$ have been extensively explored for the site-selective installation of various functional groups into the otherwise less reactive C5 position of the quinoline nucleus. Thus, since the seminal work by Stahl and co-workers on copper-catalyzed C5-selective chlorination through a single-electron-transfer mechanism, ${ }^{4}$ various methods for the C5-functionalization of 8 -amidoquinolines with halogen, ${ }^{5}$ oxygen, ${ }^{6}$ sulfur (and selenium), ${ }^{7}$ and nitrogen ${ }^{8}$ groups have been developed.

8-Amidoquinolines have also allowed for the C5-selective functionalization with alkyl groups. The most extensively studied reaction of this type is metal-catalyzed fluoroalkylation with fluoroalkyl bromides via a radical mechanism (Scheme 1a). ${ }^{9}$ Meanwhile, Zeng and co-workers
developed iron-catalyzed C5-allylation of 8-amidoquinolines with allyl alcohols, which likely operates by a nonradical mechanism (Scheme 1b). ${ }^{10}$ This was followed by the development of analogous metal-catalyzed C5-functionalization reactions using aminals, ${ }^{11}$ benzylamines, ${ }^{12}$ and benzyl acetates ${ }^{13}$ as electrophiles. Recently, Jeganmohan and co-workers disclosed ruthenium-catalyzed C5-H alkylation of 8 -amidoquinolines bearing an aroyl group with alkyl bromides, which was proposed to involve the addition of an alkyl radical to a ruthenacycle intermediate formed by bidentate chelation-assisted aromatic $\mathrm{C}-\mathrm{H}$ activation (Scheme 1c). ${ }^{5 g .14}$ Despite the above developments, C5alkylation of 8 -amidoquinolines with unfunctionalized

Transition-metal-catalyzed C-H fluoroalkylation

> b) Fe- or Rh-catalyzed C-H allylation and benzylation

c) Ru-catalyzed C-H alkylation with alkyl bromides

d) This work: Fe-catalyzed C-H alkylation with cycloalkanes

Scheme 1 Development of transition-metal-catalyzed C5-alkylation of 8 -amidoquinolines
alkanes via $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond cleavage, which can be categorized as $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ coupling, ${ }^{15}$ remains elusive. Herein, we report on such a transformation using cycloalkanes as alkyl sources promoted by an iron catalyst in combination with di-tert-butyl peroxide (DTBP; Scheme 1d). The reaction tolerates 8 -amidoquinolines bearing various aroyl and alkanoyl groups and is proposed to involve the addition of an alkyl radical to an iron-chelated intermediate.

The present study commenced with exploration of the reaction of N -(quinolin-8-yl)benzamide (1a) in cyclooctane as the solvent and the alkylation agent (Table 1). In light of the capability of $\mathrm{Fe}(\mathrm{II}) /$ peroxide systems to generate alkoxy radical that can abstract hydrogen from aliphatic $\mathrm{C}-\mathrm{H}$ bonds, ${ }^{15,16}$ we initially performed the reaction in the presence of $\mathrm{Fe}(\mathrm{OAc})_{2}$ ($20 \mathrm{~mol} \%$) and DTBP (4 equiv), which afforded, after 12 hours at $150^{\circ} \mathrm{C}$, the alkylation product 2 a in 43% yield with exclusive C5-selectivity (entry 1). While the addition of inorganic or organic base ($40 \mathrm{~mol} \%$) to this system had detrimental or negligible effect in most cases (entries 2-8), $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ was found to improve the yield of $\mathbf{2 a}$ to 61% (entry 6). With $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ as the additive, we next explored ligand effects. While commercially available bipyri-

Table 1 C5-Alkylation of 8-Amidoquinoline 1a in Cyclooctane ${ }^{\text {a }}$

Entry	Additive	Ligand	Yield (\%)
1	-	-	43
2	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	-	28
3	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	-	30
4	$\mathrm{~K}_{2} \mathrm{HPO}_{4}$	-	41
5	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	-	46
6	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	-	61
7	DABCO^{2}	-	39
8	DBU^{2}	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	-
10	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	1,10-phenanthroline	39
11	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	neocuproine	45
12	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	bathocuproine	54
13	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	$6,6^{\prime}$-dmbpy	51
14	$\mathrm{NaH}_{2} \mathrm{PO}_{4}$	$2,2^{\prime}$-biquinoline	57

[^0]dine/phenanthroline-type ligands had only negative or negligible effect (entries 9-13), those bearing substituents near the nitrogen atoms were found to give marginally but consistently better results than 1,10-phenanthroline. Given this observation, we tested a bulkier ligand to find that $6,6^{\prime}-$ di-tert-butyl-2,2'-bipyridine (6,6'-dtbbpy) improved the yield to 77% (isolated; entry 14).

With the optimized conditions (Table 1, entry 14) in hand, we explored the scope for 8-amidoquinoline derivatives (Scheme 2). Various N -(quinolin-8-yl)benzamides containing electron-withdrawing ($\mathrm{CF}_{3}, \mathrm{~F}$, and Cl) or -donating (OMe and Me) groups on the aryl group at the ortho, para, or meta position afforded the corresponding C5-cyclooctylated products ($\mathbf{2 b} \mathbf{- 2 1}$) in good yields ($72-87 \%$). The alkylation reactions of amide substrates bearing a 1- or 2naphthyl group also proceeded smoothly to give the desired products ($\mathbf{2 m}$ and $\mathbf{2 n}$) in 75% and 77% yield, respectively. For the reaction of N -(quinolin-8-yl)alkylamides, the use of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ instead of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ proved to give slightly better

2b ($\mathrm{R}=\mathrm{OMe}$), 79\% 2c $(R=F), 83 \%$ 2d ($\mathrm{R}=\mathrm{CF}_{3}$), 87\% 2e (R = CI), 84\%

2j ($\mathrm{R}=\mathrm{Me}$), 75\%
2k ($\mathrm{R}=\mathrm{F}$), 75%
21 ($\mathrm{R}=\mathrm{CF}_{3}$), 72\%

2n, 77\%

2f ($\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$), 84\% 2g (R $\left.=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}\right), 86 \%$ 2h ($\mathrm{R}=\mathrm{CF}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$), 84\% $2 \mathbf{i}\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{OMe}\right), 82 \%$

2m, 75%

20, 71\% ${ }^{\text {a }}$

$2 p, 76 \%^{a}$

2r, $77 \%^{a}$

2s, $73 \%{ }^{\text {a }}$

Scheme 2 Substrate scope for the cyclooctylation of 8-amidoquinoline derivatives. ${ }^{\text {a }} \mathrm{KH}_{2} \mathrm{PO}_{4}$ ($40 \mathrm{~mol} \%$) was utilized instead of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$. ${ }^{\text {b }}$ Cycloheptane was used instead of cyclooctane.
yields. Thus, amides bearing various alkyl substituents, such as methyl, isobutyl, isopropyl, cyclohexyl, tert-butyl, and 1-adamantyl groups, afforded the corresponding C5cyclooctylated products in good yields (20-2t). The alkylation of 1a also proceeded in cycloheptane to afford the C5cycloheptylated product $\mathbf{2 u}$ in 79% yield, whereas attempts at C5-cycloalkylation in cyclohexane or cyclopentane failed for unknown reasons. Note also that additional attempts to use aliphatic solvents such as THF and 1,4-dioxane as alkylating agents were futile under the present catalytic system.

To gain insight into the mechanism of the present C5alkylation, control experiments were performed. First, the reaction of 8 -aminoquinoline under the standard conditions failed to give any products including the C5-cyclooctylated derivative (Scheme 3a), which indicated the importance of the chelation effect of the amide moiety for the activation of the quinoline ring. Second, the addition of 2 equivalents of TEMPO completely shut down the reaction of 1a under the standard conditions (Scheme 3b), which suggested the involvement of radical species.

b)

Scheme 3 Control experiments

Based on the results of the control experiments and literature precedents, ${ }^{6 b, 16,17}$ we propose a possible reaction mechanism as shown in Scheme 4. The Fe(II) precatalyst A would be first oxidized by DTBP to an Fe (III) species B with concomitant generation of tert-butoxy radical. Deprotonation of 8 -amidoquinoline $\mathbf{1}$ by species \mathbf{B} would form a chelate complex C. Meanwhile, tert-butoxy radical abstracts a hydrogen atom from the cycloalkane to generate an alkyl radical. The alkyl radical would then undergo addition to the C5 position of \mathbf{C} to give radical species \mathbf{D}, which could be alternatively represented as Fe (II) chelate intermediate \mathbf{D}^{\prime}. Deprotonation of the C5 position and protonation of the amidate nitrogen, which might be assisted by the base, would furnish product 2 and regenerate species \mathbf{A}.

Scheme 4 Possible catalytic cycle

In summary, we have developed an iron-catalyzed C5selective alkylation of 8-amidoquinolines using cycloalkane as the alkylating agent under oxidative conditions. 8 -Amidoquinoline derivatives bearing a variety of aryl- and alkylamide moieties were tolerated, affording the desired alkylation products in moderate to good yields. The present study would hold a promise for further development of C5-alkylation of quinoline derivatives using a broader range of unactivated alkanes with the aid of different approaches of hydrogen atom abstraction/alkyl radical generation.

Abstract

All reactions dealing with air- and moisture-sensitive compounds were carried out in oven-dried reaction vessels under nitrogen atmosphere. Analytical TLC was performed on Merck 60 F254 silica gel plates. Flash column chromatography was performed using 40-63 $\mu \mathrm{m}$ silica gel (Si 60, Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL ECA-400 or Bruker AV-400 (400 MHz) NMR spectrometer, and are reported in parts per million (ppm) downfield from an internal standard (tetramethylsilane, 0 ppm). GC analysis was performed on a Shimadzu GC-2010 system equipped with glass capillary column DB-5 (Agilent J\&W, 0.25 mm i.d. $\times 30 \mathrm{~m}, 0.25 \mu \mathrm{~m}$ film thickness). High-resolution mass spectra (HRMS) were obtained with a Q-Tof Premier LC HR mass spectrometer. Melting points were determined using a capillary melting point apparatus and are uncorrected. Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, and other commercial suppliers, and were used as received. 8-Amidoquinolines 1 were prepared according to a literature procedure. ${ }^{18} 6,6^{\prime}-$ Di-tert-butyl-2,2'-bipyridine was prepared according to the literature. ${ }^{19}$

Iron-Catalyzed C5-Alkylation of 8-Amidoquinolines with Cycloalkanes; General Procedure

In a Schlenk tube were placed 8 -amidoquinoline 1 (0.1 mmol), $\mathrm{Fe}(\mathrm{OAc})_{2}$ ($5.2 \mathrm{mg}, 0.02 \mathrm{mmol}$), 6,6'-di-tert-butyl-2,2'-bipyridine (5.4 $\mathrm{mg}, 0.02 \mathrm{mmol}$), and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ [$4.8 \mathrm{mg}, 0.04 \mathrm{mmol}$; $\mathrm{KH}_{2} \mathrm{PO}_{4}$ was used for N -(quinolin-8-yl)alkylamides] under nitrogen atmosphere. Di-tert-butyl peroxide ($73 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$) and cycloalkane (0.5 mL) were added, and the resulting solution was stirred at $150{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was allowed to cool to room temperature, and then filtered through a short pad of silica gel, which was washed with

EtOAc (5 mL). The filtrate was concentrated under reduced pressure. Silica gel chromatography (hexane/EtOAc, 5:1) of the crude product afforded the desired product 2.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)benzamide (2a)

Yellow oil; yield: 28 mg (77\%); $R_{f}=0.64$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.77(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.84 (dd, $J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.47 (dd, $J=8.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.10-8.07 (m, 2 H$), 7.58-7.47(\mathrm{~m}, 5 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 6 \mathrm{H})$, 1.79-1.58 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.4,147.6,140.6,139.3,135.4,132.5$ (two signals overlapped), 131.8, 128.8, 127.4, 125.9, 124.3, 121.2, 116.6, 38.6, 34.2, 27.1, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 359.2123$; found: 359.2126.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-4-methoxybenzamide (2b)

Yellow oil; yield: 31 mg (79\%); $R_{f}=0.50$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.70(\mathrm{~s}, 1 \mathrm{H}), 8.89-8.81(\mathrm{~m}, 2 \mathrm{H}), 8.46$ (dd, $J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ 6.98 (m, 2 H), 3.89 (s, 3 H), 3.53-3.45 (m, 1 H), 1.97-1.79 (m, 6 H), 1.77-1.60 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.0,162.5,147.5,140.3,139.3$, $132.7,132.5,129.2,127.8,125.9,124.4,121.1,116.4,114.0,55.5,38.5$, 34.2, 27.1, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 389.2229$; found: 389.2232.

\boldsymbol{N}-(5-Cyclooctylquinolin-8-yl)-4-fluorobenzamide (2c)

Yellow solid; yield: 31 mg (83%); mp $87-88{ }^{\circ} \mathrm{C} ; R_{f}=0.65$ (hexane/ EtOAc, 2:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.71(\mathrm{~s}, 1 \mathrm{H}), 8.91-8.71(\mathrm{~m}, 2 \mathrm{H}), 8.47$ (dd, $J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ 7.19 (m, 2 H), 3.52-3.46 (m, 1 H), 1.95-1.76 (m, 6 H), 1.72-1.67 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=252.2 \mathrm{~Hz}\right), 164.3,147.6$, $140.8,139.2,132.6,132.4,131.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.0 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.0\right.$ $\mathrm{Hz}), 125.9,124.3,121.2,116.5,115.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}\right), 38.6,34.2$, 27.0, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+}: 377.2029$; found: 377.2027.
\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-4-(trifluoromethyl)benzamide (2d) Yellow solid; yield: 37 mg (87%); mp $142-143{ }^{\circ} \mathrm{C} ; R_{f}=0.60$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.81(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.81(\mathrm{~m}, 2 \mathrm{H}), 8.49$ (dd, $J=8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2$ H), 7.54-7.47 (m, 2 H), 3.55-3.46 (m, 1 H), 1.99-1.83 (m, 6 H), 1.791.62 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.0,147.7,141.2,139.2,138.7,133.4$ $\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right), 132.6,132.1,127.8,125.91\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)$, $125.90,124.3,123.8\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right), 121.3,116.8,38.6,34.2,27.0$, 26.6, 26.2.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 427.1997; found: 427.1999.

4-Chloro- \boldsymbol{N}-(5-cyclooctylquinolin-8-yl)benzamide (2e)

Yellow solid; yield: 33 mg (84%); $\mathrm{mp} 110-111{ }^{\circ} \mathrm{C} ; R_{f}=0.62$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.73(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.81(\mathrm{~m}, 2 \mathrm{H}), 8.47$ (dd, $J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04-7.99 (m, 2 H), $7.53-7.45$ (m, 4 H), 3.523.46 (m, 1 H), 1.95-1.81 (m, 6 H$), 1.79-1.56(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.2,147.6,140.9,139.2,138.0$, $133.8,132.6,132.2,129.1,128.8,125.9,124.3,121.2,116.6,38.6,34.2$, 27.0, 26.6, 26.2.

HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 393.1734$; found: 393.1729.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-3-methylbenzamide (2f)

Yellow oil; yield: 31 mg (84\%); $R_{f}=0.67$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.73$ ($\mathrm{s}, 1 \mathrm{H}$), 8.88-8.83 (m, 2 H), 8.47 (d, J=7.7 Hz, 1 H), $7.89(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}$, $3 \mathrm{H}), 7.38$ (d, J = 7.6 Hz, 1 H), 3.53-3.46 (m, 1 H), 2.48 (s, 3 H), 1.97$1.80(\mathrm{~m}, 6 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.6,147.6,140.6,139.3,138.7$, 135.4, 132.6, 132.52, 132.49, 128.7, 128.1, 125.9, 124.33, 124.27, 121.1, 116.6, 38.5, 34.2, 27.1, 26.6, 26.3, 21.6.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 373.2280$; found: 373.2284.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-3-methoxybenzamide (2g)

Yellow oil; yield: 33 mg (86\%); $R_{f}=0.67$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.75(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.82(\mathrm{~m}, 2 \mathrm{H}), 8.47$ (dd, $J=8.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65-7.62 (m, 2 H), 7.52-7.42 (m, 3 H), 7.11 (dd, $J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.82$ (m, 6 H), 1.78-1.62 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2,160.1,147.6,140.7,139.3$, 136.9, 132.5 (two signals overlapped), 129.8, 125.9, 124.3, 121.2, $119.2,118.0,116.5,112.7,55.6,38.6,34.2,27.1,26.6,26.3$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 389.2229$; found: 389.2226.
\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-3-(trifluoromethyl)benzamide (2h) Yellow solid; yield: 36 mg (84%); $\mathrm{mp} 80-81^{\circ} \mathrm{C} ; R_{f}=0.65$ (hexane/ EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.80(\mathrm{~s}, 1 \mathrm{H}), 8.86-8.83(\mathrm{~m}, 2 \mathrm{H}), 8.49$ (dd, J=8.7, 1.4 Hz, 1 H), 8.35 (s, 1 H), 8.24 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.83 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.47$ (m, 1 H), 1.98-1.83 (m, 6 H$), 1.78-1.64(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.8,147.8,141.2,139.2,136.3$, $132.6,132.1,131.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right), 130.3,129.4,128.3\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.4\right.$ $\mathrm{Hz}), 125.9,124.6\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 124.3,123.9\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.6 \mathrm{~Hz}\right)$, 121.3, 116.8, 38.6, 34.2, 27.0, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 427.1997; found: 427.1999.
\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-3,4-dimethoxybenzamide (2i)
Yellow oil; yield: 34 mg (82\%); $R_{f}=0.41$ (hexane/EtOAc, 2:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.72(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.82(\mathrm{~m}, 2 \mathrm{H}), 8.46$ (dd, $J=8.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68-7.64 (m, 2 H), 7.51-7.46 (m, 2 H$), 6.99$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ 1.83 (m, 6 H), 1.75-1.66 (m, 8 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.0,152.0,149.2,147.5,140.4$, 139.3, 132.6, 132.5, 128.2, 125.9, 124.4, 121.1, 119.8, 116.3, 111.0, 110.5, 56.2, 56.1, 38.6, 34.2, 27.1, 26.6, 26.2.

HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 419.2335; found: 419.2337.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-2-methylbenzamide (2j)

Yellow oil; yield: 28 mg (75\%); $R_{f}=0.70$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.22(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.76(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{dd}, J=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.83$ (m, 6 H$), 1.71-1.62$ ($\mathrm{m}, 8 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.1,147.6,140.7,139.1,136.9$, 136.7, 132.7, 132.4, 131.4, 130.2, 127.3, 126.0, 125.8, 124.2, 121.1, 116.5, 38.6, 34.2, 27.0, 26.6, 26.3, 20.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 373.2280; found: 373.2283.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-2-fluorobenzamide (2k)

Yellow oil; yield: 28 mg (75\%); $R_{f}=0.67$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=11.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{dd}, J=4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=8.7,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.22 (td, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H})$, 7.27-7.21 (m, 1 H), 3.53-3.47 (m, 1 H), 1.98-1.81 (m, 6 H), 1.76-1.68 ($\mathrm{m}, 8 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 160.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 249.1 Hz), 147.8, 141.0, 139.3, 133.5, 132.7, 132.4, 132.1, 125.9, 124.9 $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 124.3,122.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11.7 \mathrm{~Hz}\right), 121.2,117.3,116.4$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.5 \mathrm{~Hz}\right), 38.7,34.2,27.1,26.6,26.3$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OF}[\mathrm{M}+\mathrm{H}]^{+}$: 377.2029; found: 377.2027.
\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-2-(trifluoromethyl)benzamide (21)
Yellow solid; yield: 31 mg (72\%); mp $189-190{ }^{\circ} \mathrm{C} ; R_{f}=0.60$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.17(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50-7.45 (m, 2 H), 3.53-3.47 (m, 1 H), 1.96-1.83 (m, 6 H), 1.78-1.64 ($\mathrm{m}, 8 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8,147.6,141.3,139.0,136.4$, $132.5,132.3,132.2,130.1,128.6,127.8\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 126.7(\mathrm{q}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.7 \mathrm{~Hz}\right), 125.8,124.2,123.7\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.8 \mathrm{~Hz}\right), 121.2,116.9$, 38.6, 34.2, 27.0, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OF}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 427.1997; found: 427.1998.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-1-naphthamide (2m)

Yellow solid; yield: $31 \mathrm{mg}\left(75 \%\right.$); $\mathrm{mp} 91-92{ }^{\circ} \mathrm{C} ; R_{f}=0.55$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.43(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.73 (dd, $J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=8.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 4$ H), 7.47 (dd, J = 8.6, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55-3.49 (m, 1 H), 1.98-1.85 (m, 6 H), 1.78-1.65 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.7,147.6,140.9,139.1,135.0$, $134.0,132.8,132.5,131.0,130.5,128.4,127.3,126.6,125.9,125.7$, 125.6, 125.0, 124.3, 121.2, 116.7, 38.6, 34.2, 27.1, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 409.2280$; found: 409.2281.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)-2-naphthamide (2n)

Yellow solid; yield: 31 mg (77\%); mp $104-105{ }^{\circ} \mathrm{C} ; R_{f}=0.60$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.92(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.88 (dd, $J=4.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}, 1$ H), 8.14 (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.05 (dd, $J=6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.00$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}$, $2 \mathrm{H}), 3.54-3.48$ (m, 1 H$), 2.01-1.81(\mathrm{~m}, 6 \mathrm{H}), 1.78-1.66$ (m, 8 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.5,147.6,140.7,139.3,135.0$, 132.9, 132.7, 132.6, 132.5, 129.3, 128.7, 128.0, 127.87, 127.85, 126.8, 125.9, 124.4, 123.9, 121.2, 116.6, 38.6, 34.2, 27.1, 26.6, 26.3.

HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right.$: 409.2280; found: 409.2279.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)acetamide (20)

Yellow oil; yield: 21 mg (71\%); $R_{f}=0.70$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.78(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=4.1,1.5 \mathrm{~Hz}, 1$ H), 8.67 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (dd, $J=8.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, $J=$ $8.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49-3.43 (m, 1 H), 2.33 ($\mathrm{s}, 3$ H), 1.92-1.80 (m, 6 H), 1.76-1.61 (m, 8 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.7,147.4,140.3,138.8,132.5$, $132.4,125.8,124.2,121.0,116.4,38.4,34.2,27.0,26.6,26.2,25.2$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 297.1967; found: 297.1969.

\boldsymbol{N}-(5-Cyclooctylquinolin-8-yl)-3-methylbutanamide (2p)

Yellow oil; yield: 26 mg (76\%); $R_{f}=0.72$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.79(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.5 \mathrm{~Hz}, 1$ H), 8.72 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (dd, $J=8.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, $J=$ 8.6, 4.1 Hz, 1 H), $7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 6 \mathrm{H}), 1.76-1.62(\mathrm{~m}$, $8 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,147.4,140.2,138.8,132.5$, $132.4,125.8,124.3,121.0,116.4,47.7,38.6,34.2,27.1,26.6,26.4$, 26.2, 22.6.

HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 339.2436$; found: 339.2435 .

N -(5-Cyclooctylquinolin-8-yl)isobutyramide (2q)

Yellow oil; yield: 25 mg (76\%); $R_{f}=0.72$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.91(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.1,1.4 \mathrm{~Hz}, 1$ H), $8.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47-8.42(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}$, 1 H), 7.42 (dd, $J=7.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48-3.43 (m, 1 H), 2.80-2.70 (m, 1 H), 1.93-1.80 (m, 6 H$), 1.75-1.67(\mathrm{~m}, 8 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.7,147.4,140.2,139.0,132.5$, $132.4,125.8,124.3,121.0,116.4,38.5,37.2,34.2,27.1,26.6,26.2$, 19.8.

HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 325.2280; found: 325.2283.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)cyclohexanecarboxamide (2r)

Yellow oil; yield: $28 \mathrm{mg}(77 \%)$; $R_{f}=0.72$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.89(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.1,1.3 \mathrm{~Hz}, 1$ H), 8.71 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.44 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (dd, $J=8.6,4.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.41 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.49-3.43 (m, 1 H), 2.50-2.42 (m, 1 H), 2.10-2.06 (m, 2 H), 1.94-1.80 (m, 8 H), 1.77-1.64 (m, 10 H), 1.451.25 (m, 4 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8,147.4,140.1,139.0,132.6$, 132.4, 125.8, 124.3, 121.0, 116.4, 47.0, 38.5, 34.2, 29.9, 27.1, 26.6, 26.2, 25.9 (two signals overlapped).

HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 365.2593$; found: 365.2594.

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)pivalamide (2s)

Yellow oil; yield: $25 \mathrm{mg}(73 \%) ; R_{f}=0.73$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.28(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.72 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=8.6,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 6 \mathrm{H})$, 1.74-1.65 (m, 8 H), 1.42 (s, 9 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.1,147.5,140.1,139.3,132.6$, $132.4,125.8,124.3,121.0,116.2,40.3,38.3,34.2,27.8,27.0,26.5$, 26.2.

HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 339.2436$; found: 339.2440 .

\mathbf{N}-(5-Cyclooctylquinolin-8-yl)adamantane-1-carboxamide (2t)

Yellow oil; yield: 33 mg (80\%); $R_{f}=0.80$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.23(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ ($\mathrm{dd}, J=8.6,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 8 \mathrm{H})$, 1.94-1.78 (m, 13 H), 1.75-1.65 (m, 8 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.7,147.5,140.0,139.4,132.6$, 132.4, 125.8, 124.3, 121.0, 116.3, 42.3, 39.4, 38.8, 36.6, 34.2, 28.4, 27.1, 26.6, 26.2.

HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 417.2906$; found: 417.2908.

\mathbf{N}-(5-Cycloheptylquinolin-8-yl)benzamide (2u)

Yellow solid; yield: 27 mg (79\%); mp 91-92 ${ }^{\circ} \mathrm{C}$; $R_{f}=0.80$ (hexane/EtOAc, 2:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.76(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 8.84 (dd, $J=4.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 8.46 ($\mathrm{dd}, J=8.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.10-8.06$ (m, 2 H), 7.58-7.53 (m, 3 H), 7.52-7.47 (m, 2 H), 3.44-3.32 (m, 1 H), 2.05-2.01 (m, 2 H), 1.93-1.85 (m, 2 H), 1.83-1.76 (m, 4 H), 1.72-1.65 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.4,147.6,140.3,139.2,135.4$, $132.5,132.4,131.8,128.8,127.4,125.9,123.8,121.2,116.6,40.6,36.5$, 27.9, 27.6.

HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 345.1967 ; found: 345.1969.

Funding Information

This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2016-T2-2-043 to N.Y.) and Tier 1 (RG114/18 to N.Y.), the Fundamental Research Funds for China University of Petroleum (China East) (Grant No. 27RA2014007 to W.X.),
and the China Postdoctoral Science Foundation (Grant No. 31CZ2019010, 05FW2014001 to W.X.).

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/a-1337-5416.

References

(1) (a) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (b) Solomon, V. R.; Lee, H. Curr. Med. Chem. 2011, 18, 1488. (c) Colomb, J.; Becker, G.; Fieux, S.; Zimmer, L.; Billard, T.J. Med. Chem. 2014, 57, 3884.
(2) (a) Iwai, T.; Sawamura, M. ACS Catal. 2015, 5, 5031. (b) Khan, B.; Dutta, H. S.; Koley, D. Asian J. Org. Chem. 2018, 7, 1270. (c) Xu, Z.; Yang, X.; Yin, S.-F.; Qiu, R. Top. Curr. Chem. 2020, 378, 42.
(3) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
(4) Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.
(5) Selected examples: (a) Guo, H.; Chen, M.; Jiang, P.; Chen, J.; Pan, L.; Wang, M.; Xie, C.; Zhang, Y. Tetrahedron 2015, 71, 70. (b) Zhang, S.; Ullah, A.; Yamamoto, Y.; Almansour, A. I.; Arumugam, N.; Kumar, R. S.; Bao, M. ChemistrySelect 2017, 2, 3414. (c) Ding, J.; Zhang, Y.; Li, J. Org. Chem. Front. 2017, 4, 1528. (d) Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Kang, J.; Wu, Y.; Wu, Y. Adv. Synth. Catal. 2017, 359, 1976. (e) Du, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2018, 83, 3403. (f) Motati, D. R.; Uredi, D.; Watkins, E. B. Chem. Sci. 2018, 9, 1782. (g) Mariappan, A.; Das, K. M.; Jeganmohan, M. Org. Biomol. Chem. 2018, 16, 3419.
(6) (a) Shen, C.; Yang, M.; Xu, J.; Chen, C.; Zheng, K.; Shen, J.; Zhang, P. RSC Adv. 2017, 7, 49436. (b) Vinayak, B.; Navyasree, P.; Chandrasekharam, M. Org. Biomol. Chem. 2017, 15, 9200. (c) Xia, C.; Wang, K.; Xu, J.; Shen, C.; Sun, D.; Li, H.; Wang, G.; Zhang, P. Org. Biomol. Chem. 2017, 15, 531.
(7) Selected examples: (a) Liang, H.-W.; Jiang, K.; Ding, W.; Yuang, Y.; Shuai, L.; Chen, Y.-C.; Wei, Y. Chem. Commun. 2015, 51, 16928. (b) Zhu, L.; Qiu, R.; Cao, X.; Xiao, S.; Xu, X.; Au, C.-T.; Yin, S.-F. Org. Lett. 2015, 17, 5528. (c) Qiao, H.; Sun, S.; Yang, F.; Zhu, Y.; Zhu, W.; Dong, Y.; Wu, Y.; Kong, X.; Jiang, L.; Wu, Y. Org. Lett. 2015, 17, 6086. (d) Wang, K.; Wang, G.; Duan, G.; Xia, C. RSC Adv. 2017, 7, 51313. (e) Sahoo, H.; Mandal, A.; Selvakumar, J.; Baidya, M. Eur. J. Org. Chem. 2016, 4321. (f) Wei, J.; Jiang, J.; Xiao, X.; Lin, D.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. J. Org. Chem. 2016, 81, 946. (g) Chen, G.; Zhang, X.; Zeng, Z.; Peng, W.; Liang, Q.; Liu, J. ChemistrySelect 2017, 2, 1979. (h) Bai, P.; Sun, S.; Li, Z.; Qiao, H.; Su, X.; Yang, F.; Wu, Y.; Wu, Y. J. Org. Chem. 2017, 82, 12119. (i) Xia, H.; An, Y.; Zeng, X.; Wu, J. Org. Chem. Front. 2018, 5, 366. (j) Liu, X.; Zhang, H.; Yang, F.; Wang, B. Org. Biomol. Chem. 2019, 17, 7564. (k) Kumar, V.; Banert, K.; Ray, D.; Saha, B. Org. Biomol. Chem. 2019, 17, 10245.
(8) Selected examples: (a) Dou, Y.; Xie, Z.; Sun, Z.; Fang, H.; Shen, C.; Zhang, P.; Zhu, Q. ChemCatChem 2016, 8, 3570. (b) Whiteoak, C. J.; Planas, O.; Company, A.; Ribas, X. Adv. Synth. Catal. 2016, 358, 1679. (c) Zhu, X.; Qiao, L.; Ye, P.; Ying, B.; Xu, J.; Shen, C.; Zhang, P. RSC Adv. 2016, 6, 89979. (d) Sahoo, H.; Reddy, M. K.; Ramakrishna, I.; Baidya, M. Chem. Eur. J. 2016, 22, 1592. (e) He, Y.; Zhao, N.; Qiu, L.; Zhang, X.; Fan, X. Org. Lett. 2016, 18, 6054. (f) Yin, Y.; Xie, J.; Huang, F.-Q.; Qi, L.-W.; Zhang, B. Adv. Synth. Catal. 2017, 359, 1037. (g) Xia, H.; An, Y.; Zeng, X.; Wu, J. Chem. Commun. 2017, 53, 12548. (h) Yi, H.; Chen, H.; Bian, C.; Tang, Z.;

Singh, A. K.; Qi, X.; Yur, X.; Lan, Y.; Lee, J.-F.; Lei, A. Chem. Commun. 2017, 53, 6736. (i) Khan, B.; Khan, A. A.; Bora, D.; Verma, D.; Koley, D. ChemistrySelect 2017, 2, 260.
(9) Selected examples: (a) Chen, H.; Li, P.; Wang, M.; Wang, L. Org. Lett. 2016, 18, 4794. (b) Kuninobu, Y.; Nishi, M.; Kanai, M. Org. Biomol. Chem. 2016, 14, 8092. (c) Jin, L.-K.; Lu, G.-P.; Cai, C. Org. Chem. Front. 2016, 3, 1309. (d) Han, S.; Liang, A.; Ren, X.; Gao, X.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Tetrahedron Lett. 2017, 58, 4859. (e) Chen, C.; Zeng, R.; Zhang, J.; Zhao, Y. Eur. J. Org. Chem. 2017, 6947. (f) Suo, J.-F.; Zhao, X.-M.; Zhang, K.-X.; Zhou, S.-L.; Niu, J.L.; Song, M.-P. Synthesis 2017, 49, 3916. (g) Mondal, S.; Hajra, A. Org. Biomol. Chem. 2018, 16, 2846. (h) Jin, C.; Zhu, R.; Sun, B.; Zhang, L.; Zhuang, X.; Yu, C. Asian J. Org. Chem. 2019, 8, 2213.
(10) Cong, X.; Zeng, X. Org. Lett. 2014, 16, 3716.
(11) Reddy, M. D.; Fronczek, F. R.; Watkins, E. B. Org. Lett. 2016, 18, 5620.
(12) Cui, M.; Liu, J.-H.; Lu, X.-Y.; Lu, X.; Zhang, Z.-Q.; Xiao, B.; Fu, Y. Tetrahedron Lett. 2017, 58, 1912.
(13) Niu, T.-J.; Xu, J.-D.; Ren, B.-Z.; Liu, J.-H.; Hu, G.-Q. ChemistrySelect 2019, 4, 4682.
(14) See also: Ramesh, B.; Jeganmohan, M. Org. Lett. 2017, 19, 6000.
(15) (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (e) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem. Int. Ed. 2014, 53, 74. (f) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138. (g) Kozlowski, M. C. Acc. Chem. Res. 2017, 50, 638. (h)Huang, C. Y.; Kang, H.; Li, J.; Li, C. J. J. Org. Chem. 2019, 84, 12705.
(16) Selected examples: (a) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem. Int. Ed. 2007, 46, 6505. (b) Zhang, Y.; Li, C.-J. Eur. J. Org. Chem. 2007, 4654. (c) Tanaka, T.; Hashiguchi, K.; Tanaka, T.; Yazaki, R.; Ohshima, T. ACS Catal. 2018, 8, 8430.
(17) (a) Huang, C.-Y.; Li, J.; Liu, W.; Li, C.-J. Chem. Sci. 2019, 10, 5018. (b) Tian, H.; Yang, H.; Tian, C.; An, G.; Li, G. Org. Lett. 2020, 22, 7709.
(18) (a) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688. (b) Deb, A.; Bag, S.; Kancherla, R.; Maiti, D. J. Am. Chem. Soc. 2014, 136, 13602.
(19) Hintermann, L.; Xiao, L.; Labonne, A. Angew. Chem. Int. Ed. 2008, 47, 8246.

[^0]: ${ }^{\text {a }}$ Reaction conditions: 1 a (0.10 mmol), Fe(OAc$)_{2}$ ($20 \mathrm{~mol} \%$), DTBP (0.40 mmol), additive ($40 \mathrm{~mol} \%$), ligand ($20 \mathrm{~mol} \%$), cyclooctane (0.5 mL), $150^{\circ} \mathrm{C}$, 12 h. DABCO: 1,4-diazabicyclo[2.2.2]octane; DBU: 1,8-diazabicyclo-[5.4.0]undec-7-ene; 6,6'-dmbpy: 6,6'-dimethyl-2,2'-bipyridine; 6,6'dtbbpy: 6,6'-di-tert-butyl-2,2'-bipyridine.
 ${ }^{\mathrm{b}}$ Determined by GC using tridecane as an internal standard.
 ${ }^{\text {c }}$ Isolated yield.

