Hydrotalcite-like Ni(OH)\textsubscript{2} Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting

Yuan Rao, Yang Wang, Hui Ning, Peng Li, and Mingbo Wu

State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China

Supporting Information

ABSTRACT: Designing economical and high-efficiency electrocatalysts for overall water splitting is urgently needed but remains a long and arduous task. Herein, we synthesized hydrotalcite-like Ni(OH)\textsubscript{2} nanosheets growing on Ni foam (Ni(OH)\textsubscript{2}/NF) via a facile one-pot hydrothermal method. With the assistance of a rotating oven, Ni(OH)\textsubscript{2} nanosheets demonstrate a regular hexagonal morphology and homogeneous distribution. The resultant Ni(OH)\textsubscript{2}/NF electrode shows superior electrocatalytic activity and durability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), as well as the overall water splitting. The Ni(OH)\textsubscript{2}/NF electrode delivers 20 mA cm-2 at an overpotential of 172 mV for HER, 50 mA cm-2 at an overpotential of 330 mV for OER, and 10 mA cm-2 at a cell voltage of 1.68 V for water electrolysis in 1.0 M KOH. The present study demonstrates a feasible and effective strategy to prepare highly efficient electrocatalysts for water electrolysis.

KEYWORDS: Ni(OH)\textsubscript{2}, nickel foam, hydrogen evolution reaction, oxygen evolution reaction, overall water splitting

INTRODUCTION

Strong dependence on fossil fuels has aroused concern due to their aggravation of globe warming and pollution. Thus, searching for clean, renewable energy alternatives is an imminent need. Electrochemical water splitting is a reliable technology for storing and transporting peak excess electricity from wind and solar energy, which can realize theoretical zero pollution by producing hydrogen and oxygen merely.1 Currently, the two reactions involved in water splitting still require high overpotentials to obtain decent reaction rates. Pt-based materials2 and Ir/Ru-based oxides3 remain the most effective electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. However, these noble metals suffer from scarcity and high cost, as well as instability, limiting their widespread application. So far, many earth-abundant catalysts with high activities for HER (chalcogenides,3–11 phosphides,5,12–17 carbides,18–22 and nitrides2,23) and OER (cobalt phosphate,2,25 oxides26–29 and hydroxides30–39) have been designed. Nevertheless, it is still difficult to couple two electrocatalysts in a single electrolyzer for water electrolysis, since their optimal working conditions usually differ from each other.40 Therefore, it is extremely advisable to design efficient non-noble electrocatalysts which show good compatibility for both HER and OER simultaneously.

Nickel is a metal with higher abundance and lower price among the six main non-noble metals (W, Mo, Co, Cu, Ni, and Fe) used in constructing HER or OER electrocatalysts.1 Particularly, as a 3D porous foam metal with superior conductivity, Ni foam has been used in many self-supported electrodes for overall water splitting, including NiSe/Ni foam,40 NiS\textsubscript{2}/Ni foam,41 NiFe LDH/Ni foam,42 MoO\textsubscript{3}/NiS\textsubscript{2}/Ni foam,43 NiP/Ni/Ni foam,44 and NiS/Ni foam.45 Ni(OH)\textsubscript{2}/Ni foam has shown excellent electrochemical activities for Li-ion batteries46 and supercapacitors,47,48 confirming its superior conductivity and stability in alkaline electrolytes. Moreover, transition metal (hydro)oxides are considered that have a remarkable effect on cleaving the HO–H bond, in which Ni(OH)\textsubscript{2} is leading the pack, while these materials exhibit a poor ability to convert the resulting reactive hydrogen intermediates (H\textsubscript{ad}) into H\textsubscript{2}.49–51 Conversely, transition metals including Ni are not efficient in the prior step of water dissociation but good at adsorbing and recombining the H\textsubscript{ad}.50 Hence, optimal electrocatalysts for overall water splitting can be designed by establishing novel bifunctional metal (hydro)oxides–metal systems (metal (hydro)oxides loaded on metal substrates), such as Ni(OH)\textsubscript{2}/Ni foam. However, to our best knowledge, only one publication reported Ni(OH)\textsubscript{2}/Ni foam requiring corrosion in NaCl aqueous solution utilized for water splitting,52 which gives an irregular morphology and unremarkable performance on electrocatalysis.

Herein we develop a facile method similar to a previously reported strategy46 to in situ grow Ni(OH)\textsubscript{2} nanosheets on Ni foam via hydrothermal treatment in pure water. Ni(OH)\textsubscript{2}...
nansheets with regular hexagonal morphology can be homogeneously distributed on Ni foam.

** Experimental Section**

Ni foam was purchased from Suzhou Jia Shi De Foam Metal Co. Ltd. Pt/C (20 wt %), Nafion (5 wt %), and RuO2 were purchased from Sigma-Aldrich Chemical Reagent Co. Ltd. The water used in the overall experiments was purified by a Millipore system.

Synthesis of Ni(OH)2/NF. To remove the surface nickel oxides, Ni foam (1 cm × 4 cm) was ultrasonically cleaned by acetone and HCl solution (3 M) for 15 min in turn and subsequently rinsed with water and ethanol for three times. The cleaned Ni foam was immersed into a solution (3 M) for 15 min in turn and subsequently rinsed with water and ethanol for three times. The resultant sample was washed with ethanol three times and dried at 60 °C for 24 h. The resultant sample was washed with ethanol three times and dried at 60 °C for 24 h. The weight increment (x mg) of Ni Foam can be directly calculated after the growth of Ni(OH)2. Ni(OH)2 loading = (x mg) × (M_{Ni(OH)2}/2M_{Ni}) = (x mg) × (93/34) = 2.7x mg, where M stands for the atomic or molecular weight.

Characterization and Instruments. The XRD patterns of the materials were recorded on a PANalytical X-ray diffractometer (Cu Kα radiation, λ = 0.15406 nm, 40 kV, 40 mA). XPS spectrum was performed by ESCALAB 250Xi instrument (Al Kα, hν = 1486.6 eV). All XRD and XPS patterns were characterized by using Ni(OH)2/NF materials. The Raman spectra were obtained from a Renishaw Raman system model 2000 spectrometer. SEM measurements were collected on a ZEISS MERLIN scanning electron microscope at 20 kV. STEM images were obtained from JEM2100F scanning transmission electron microscopy (JEOL, Tokyo, Japan) at 200 kV.

Electrochemical Measurements. All electrochemical measurements were carried out on a CHI 760E electrochemical analyzer (CHI Instruments, Inc., Shanghai) in a standard three-electrode system, during which Ni(OH)2/NF (0.8 cm × 0.8 cm) was utilized as the working electrode, while a carbon rod as the counter electrode and an Ag/AgCl electrode as the reference electrode in 1.0 M KOH solution. All potentials shown in this study were calibrated to RHE by the following equation: E(RHE) = E(Ag/AgCl) + (0.197 V) + 0.059pH.

The linear sweep voltammetry (LSV) was tested from 0 to 0.6 V at a scan rate of 5 mV/s without any activation process before recording the polarization curves, and the LSV curves were not corrected by IR correction. When the current density was calculated, the working surface area was calculated by a single side.

Evaluation of Electrochemically Active Surface Area. Based on reported methods, the electrochemically active surface areas (ECSAs) can be estimated from the electrochemical double layer capacitance (Cdl) through collecting cyclic voltammograms (CVs) in a non-Faradaic region due to ECSA being proportional to the Cdl value in the same material. Cdl of resultant materials were derived from a sequence of CV tests with different scan rates (10, 20, 40, 60, 80, and 100 mV/s) in the potential range from 0.1 to 0.2 V versus RHE. Through a plot of different scan rates versus the corresponding current density (j) between the anode and cathode (i_anodic = j*Cdl) at 0.15 V versus RHE, a linear slope was calculated as Cdl.

Results and Discussion

Following by direct hydrothermal treatment in pure water, the Ni foam substrate turns into black (see the Supporting Information, Figure S1). The XRD pattern of Ni(OH)2/NF is shown in Figure 1A; the two peaks at 44.5 and 51.8° arise from Ni (JCPDS No. 65-2865). Diffraction peaks apart from...
those of Ni correspond to (001), (100), (101), (102), (110), (111), (103), and (201) planes of hexagonal β-Ni(OH)$_2$ (JCPDS No. 14-0117).46 The formation of Ni(OH)$_2$ was further confirmed by Raman spectroscopy (Figure S2). The X-ray photoelectron spectroscopy (XPS) analysis of Ni(OH)$_2$/NF indicates the characteristic peaks of Ni and O (Figure S3A), and the C 1s signal is due to CO$_2$ in the testing atmosphere. Ni $^{2p_{1/2}}$ and Ni $^{2p_{3/2}}$ centered at 873.0 and 855.4 eV correspond to NiII (Figure S3B). The O 1s peak intensity is relatively strong which indicates a significant oxidation on the surface and the formation of Ni(OH)$_2$ (Figure S3C). The formation of β-Ni(OH)$_2$ can be ascribed to the weak oxidation reaction of Ni in pure water:$$\begin{align*}
\text{Ni} + n\text{H}_2\text{O} &\rightarrow [\text{Ni(H}_2\text{O})_n]^{2+} + 2\text{e}^- \quad (1) \\
\text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- &\rightarrow 4\text{OH}^- \quad (2) \\
[\text{Ni(H}_2\text{O})_n]^{2+} + 2\text{OH}^- &\rightarrow \text{Ni(OH)}_2 + n\text{H}_2\text{O} \quad (3)
\end{align*}$$
As displayed in the low-magnification SEM image of Ni(OH)$_2$/NF (Figure 1B), the surface of Ni foam substrate was completely covered by Ni(OH)$_2$ nanosheets, and the 3D macroporous morphology remains similar to that of the pristine nickel foam (Figure S4). Figure 1G shows the corresponding elemental mapping images of Ni and O of Ni(OH)$_2$/NF which demonstrate that Ni and O elements evenly distribute in the Ni(OH)$_2$ nanosheets. The high-magnification SEM image (Figure 1C) further reveals that Ni(OH)$_2$ nanosheets grow vertically over Ni foam and spatially interconnect, forming a typical hydrotalcite-like structure. These Ni(OH)$_2$ nanosheets show an average size about 4 \mu m with a thickness of dozens of nanometers. The high-resolution TEM (HRTEM) images derived from Ni(OH)$_2$ nanosheets (Figures 1E and S5) display well-distinguishable lattice fringes with interplanar distances of 1.56 and 4.60 \AA{} (Figure S5) indexed to the (110) and (001) planes of β-Ni(OH)$_2$, respectively. The related selected area electron diffraction (SAED) pattern (Figure 1F) exhibits discrete spots indexed to the (111), (102), (101), and (100) planes of β-Ni(OH)$_2$ phase. All these observations strongly support the successful growth of Ni(OH)$_2$ nanosheets on Ni foam merely after one-step hydrothermal treatment in pure water.

The electrocatalytic activity of Ni(OH)$_2$/NF for HER was investigated in a typical three-electrode system using Ni(OH)$_2$/NF as the working electrode directly. For comparison, bare Ni foam and 20 wt % Pt/C coated on Ni foam with the same loading mass of Ni(OH)$_2$/NF were also tested.43,45 The Ni(OH)$_2$/NF electrode demonstrates excellent electrocatalytic performance toward HER (Figure 2A), according a current density of 10, 20, 50, 100, and 300 mA cm$^{-2}$ without iR correction at overpotentials of 127, 172, 237, 303, and 492 mV, respectively. Compared to the typical Co- or Ni-based bifunctional catalysts, Ni(OH)$_2$/NF exhibits a lower overpotential (Table S1). The Tafel slope can be calculated from the plot based on the Tafel equation ($\eta = a + b \log j$, where η is the overpotential, j is the current density, and b is the Tafel slope),45 which is 56, 140, and 206 mV dec$^{-1}$ for Pt/C, Ni(OH)$_2$/NF, and the bare Ni foam, respectively (Figure S6). The much higher HER activity of Ni(OH)$_2$/NF compared to that of bare Ni foam can also be supported by its smaller semicircular diameter in the electric impedance spectrum (Figure 2B), implying smaller contact resistance and charge transfer impedance of Ni(OH)$_2$/NF. The durability of the electrode was evaluated by comparing the LSV curves of as-prepared Ni(OH)$_2$/NF before and after 5000 cycles (Figure 2C); the material gives almost the same onset potential and current density, representing a superior long-term durability. Furthermore, the chronoamperometric measurement of Ni(OH)$_2$/NF indicates that Ni(OH)$_2$/NF retains its catalytic activity even after 24 h electrocatalytic testing (Figure 2D). Its microstructure and morphology remain intact, as proved in the
XRD pattern (Figure S7A), SEM image (Figure S7B), and XPS spectra (Figure S3B,C).

The catalytic properties of Ni(OH)$_2$/NF for OER were also investigated in 1.0 M KOH and compared with the bare Ni foam and RuO$_2$ loaded on Ni foam. As shown in Figure 3A, the Ni(OH)$_2$/NF electrode exhibits much higher catalytic activity for OER than bare Ni foam and slightly lower catalytic activity than RuO$_2$ on Ni foam. The oxidation peak at 1.43 V versus RHE of Ni(OH)$_2$/NF is ascribed to the transformation of NiII to NiIII.53 The widely recognized surface Faradaic reaction of nickel hydroxide54 is as follow:

$$
\text{Ni(OH)}_2 + \text{OH}^- \rightarrow \text{NiOOH} + \text{H}_2\text{O} + e^-
$$

Ni(OH)$_2$/NF can afford a current density of 10, 20, 50, 100, and 200 mA·cm$^{-2}$ without iR correction at overpotentials of 170, 270, 330, 400, and 490 mV, respectively (Figure S3A), which prevails over the behaviors of most reported Ni- or Co-based OER or bifunctional catalysts (Table S1). The Tafel slopes of RuO$_2$, Ni(OH)$_2$/NF, and the bare Ni foam are 124, 150, and 194 mV·dec$^{-1}$, respectively (Figure S8). The long-term electrochemical stability of Ni(OH)$_2$/NF electrode was probed in 1.0 M KOH (Figure 3B), and it can stabilize around 50 mA·cm$^{-2}$ at a static potential of about 1.56 V during the 24 h testing. Ni(OH)$_2$/NF can mainly retain initial morphology and microstructure after long-time electrocatalytic OER (Figure S9B). And its phase compositions also remain nearly unchanged, as evident from its XRD pattern (Figure S9A) and XPS spectra (Figure S3B,C).

Given that Ni(OH)$_2$/NF had remarkable electrocatalytic property toward both HER and OER in 1 M KOH, with the satisfying free-standing bifunctional electrode, we constructed an electrolyzer with a two-electrode system utilizing Ni(OH)$_2$/NF as both anode and cathode for water electrolysis. The electrolyzer delivers a current density of 10 mA·cm$^{-2}$ at 1.68 V without iR correction (Figure 4A). Despite this value being inferior to that of Pt/C-Ni foam/RuO$_2$/Ni foam (1.50 V), it outperforms state-of-the-art electrolysers utilizing Co- or Ni-based bifunctional electrocatalysts for overall water splitting (Table S1). Furthermore, the long-term stability of this system was also tested; when the static potential of 1.75 V was applied, the electrolyzer afforded a constant current density around 15 mA·cm$^{-2}$ for at least 24 h without obvious decay (Figure 4B).
Meanwhile, the electrolyzer can be driven by one AAA battery with 1.5 V (Figure 4C).

Interestingly, the rotating assistance is found to be significant for forming a uniform morphology of Ni(OH)\(_2\)/NF. Ni(OH)\(_2\) nanosheets with a regular hexagonal morphology and homogeneous distribution (Figure 1B) can be obtained via rotating assistance, while Ni(OH)\(_2\) nanosheets with disorder morphology and unevenly distributed are observed without rotating (Figures S10 and S11). The Ni(OH)\(_2\)/NF synthesized with no rotary assistance (denoted Ni(OH)\(_2\)/NF-2) displays inferior HER and OER performance (Figure S12A,B). In addition, the reaction time also plays a major role in the formation of Ni(OH)\(_2\)/NF, a series of reaction times (12, 18, 24, 36, and 48 h) were investigated, and 24 h is found to be the preferable reaction time to give superior electrocatalytic activities among the investigated values (Figure S13A,B). When the reaction time was halved, i.e., 12 h, while keeping the other reaction parameters unchanged, Ni(OH)\(_2\) nanosheets did not form on the Ni foam (Figure S14A,B). On the other hand, when the reaction time was increased to 48 h, a rapid increase was found in the thickness of Ni(OH)\(_2\) nanosheets (Figure S15A,B).

Based on results discussed above, the excellent electrocatalytic performance of Ni(OH)\(_2\)/NF for both HER and OER reactions can be ascribed to the following four factors: (i) The oxygen in water initiates the self-growth of ultrathin Ni(OH)\(_2\) on Ni foam that enables strong mechanical adhesion and fast charge transfer pathways without any polymer binder, facilitating the elimination of the interfacial overpotential between Ni(OH)\(_2\) nanosheets and Ni foam. (ii) The nanosheets and hydrotalcite-like architecture of Ni(OH)\(_2\)/NF largely increase the active areas and accessible catalytic sites, which greatly facilitate ion and electron diffusion; this can be proved by the electrochemically active surface area (ECSA) calculation result that Ni(OH)\(_2\)/NF has about 118 times larger ECSA than bare Ni foam (Figure S16). (iii) There is a synergistic effect between Ni(OH)\(_2\) nanosheets and Ni foam; Ni\(^{2+}\) on Ni(OH)\(_2\) has plenty of unfilled d orbitals and possesses strong electrostatic affinity to OH\(^-\) generated by water dissociation, thus markedly accelerating the first step (H\(_2\)O + e\(^-\) → H\(_2\)O\(^+\) + OH\(^-\)) of overall water splitting in alkaline media; then the effective adsorption and recombination of H\(_2\)O proceed on Ni substrate. (iv) The nanoporous architecture of electrode surface can transform the three phase contact line of gas bubbles with the solid electrode into a discontinuous state, resulting in extremely low adhesive force between them and excellent bubble departure ability, thus promoting the electrocatalytic performance of Ni(OH)\(_2\)/NF. \(^35\)

CONCLUSIONS

In summary, a novel and facile strategy has been developed to prepare binder-free catalysts for water electrolysis via in situ growth of Ni(OH)\(_2\) nanosheets on Ni foam. The hydrotalcite-like Ni(OH)\(_2\)/NF electrode possesses remarkable electrocatalytic activity and durability for both HER and OER reactions under strongly alkaline conditions. The corresponding two-electrode water electrolyzer using Ni(OH)\(_2\)/NF as both anode and cathode demonstrates an efficient system achieving 10 mA cm\(^{-2}\) at a cell voltage of 1.68 V with superior stability. This study contributes an economical and high-efficiency method to develop a self-supported noble-metal-free electrocatalyst for overall water splitting.

